Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

Implanted brain electrodes construct the only means to electrically interface with individual neurons in vivo, but their recording efficacy and biocompatibility pose limitations on scientific and clinical applications. We showed that nanoelectronic thread (NET) electrodes with subcellular dimensions, ultraflexibility, and cellular surgical footprints form reliable, glial scar-free neural integr...

متن کامل

Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials.

Seamless and minimally invasive integration of 3D electronic circuitry within host materials could enable the development of materials systems that are self-monitoring and allow for communication with external environments. Here, we report a general strategy for preparing ordered 3D interconnected and addressable macroporous nanoelectronic networks from ordered 2D nanowire nanoelectronic precur...

متن کامل

Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.

Direct electrical recording and stimulation of neural activity using micro-fabricated silicon and metal micro-wire probes have contributed extensively to basic neuroscience and therapeutic applications; however, the dimensional and mechanical mismatch of these probes with the brain tissue limits their stability in chronic implants and decreases the neuron-device contact. Here, we demonstrate th...

متن کامل

Synthetic nanoelectronic probes for biological cells and tissues.

Research at the interface between nanoscience and biology could yield breakthroughs in fundamental science and lead to revolutionary technologies. In this review, we focus on the interfaces between nanoelectronics and biology. First, we discuss nanoscale field effect transistors (nanoFETs) as probes to study cellular systems; specifically, we describe the development of nanoFETs that are compar...

متن کامل

Architectures for Nanoelectronic Neural Networks: New Results

Our group is developing artificial neural networks that may be implemented using hybrid semiconductor/molecular (“CMOL”) circuits. Estimates show that such networks (“CrossNets”) may eventually exceed the mammal brain in areal density, at much higher speed and acceptable power consumption. In this report, we demonstrate that CrossNets based on simple (two-terminal) molecular devices can work we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nano Letters

سال: 2017

ISSN: 1530-6984,1530-6992

DOI: 10.1021/acs.nanolett.7b00956